An upper limit of Cr-doping level to Retain Zero-strain Characteristics of Li4Ti5O12 Anode Material for Li-ion Batteries

نویسندگان

  • Hannah Song
  • Tae-Gyung Jeong
  • Su-Won Yun
  • Eun-Kyung Lee
  • Shin-Ae Park
  • Yong-Tae Kim
چکیده

Since Li4Ti5O12 as a promising anode material in lithium-ion batteries (LIBs) has a poor rate performance due to low electronic conductivity, a doping of Li4Ti5O12 with heterogeneous atoms has been considered to overcome this problem. Herein, we report that there is an upper limit of doping level to maintain the zero strain characteristics of Li4Ti5O12 lattice during charge/discharge process. By using synchrotron studies, it was revealed that the Li+ diffusivity was maximized at a certain doping level for which the conductivity was markedly increased with maintaining the zero strain characteristics. However, with more doses of dopants over the upper limit, the lattice shrank and therefore the Li+ diffusivity decreased, although the electronic conductivity was further increased in comparison with the optimal doping level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and electrochemical properties of Gd-doped Li4Ti5O12 as anode material with improved rate capability for lithium-ion batteries

Study of Gd-doping level on the electrochemical performance of Li4Ti5O12. Greatly enhanced rate capability and retention of Gd-doped Li4Ti5O12 revealed. Analysis designed to determine the position and occupancy of Gd in Li4Ti5O12. Computation describes the fundamental mechanism of performance

متن کامل

Preparation of Ce- and La-Doped Li4Ti5O12 Nanosheets and Their Electrochemical Performance in Li Half Cell and Li4Ti5O12/LiFePO4 Full Cell Batteries

This work reports on the synthesis of rare earth-doped Li₄Ti₅O12 nanosheets with high electrochemical performance as anode material both in Li half and Li₄Ti₅O12/LiFePO₄ full cell batteries. Through the combination of decreasing the particle size and doping by rare earth atoms (Ce and La), Ce and La doped Li₄Ti₅O12 nanosheets show the excellent electrochemical performance in terms of high speci...

متن کامل

Electrochemical Evaluation of PbO Nanoparticles as Anode for Lithium Ion Batteries (Technical Note)

PbO nanoparticles were synthesized using hydrothermal process. Scanning electron microscopy (SEM) was used in order to investigate of PbO powders. X-ray diffraction (XRD) pattern confirmed β-PbO formation during this process. The crystallite size of the powders was calculated using Scherrer formula about 74.6 nm. Electrochemical evaluation of the PbO nanoparticles as anode for Li-ion batteries ...

متن کامل

SnO2 Nanowires on Carbon Nanotube Film as a High Performance Anode Material for Flexible Li-ion Batteries

Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Three-dimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The ...

متن کامل

Facile synthesis of nano-Li4 Ti5O12 for high-rate Li-ion battery anodes

One of the most promising anode materials for Li-ion batteries, Li4Ti5O12, has attracted attention because it is a zero-strain Li insertion host having a stable insertion potential. In this study, we suggest two different synthetic processes to prepare Li4Ti5O12 using anatase TiO2 nanoprecursors. TiO2 powders, which have extraordinarily large surface areas of more than 250 m2 g-1, were initiall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017